- (I) Find the equation of a plane, given
 - i. a point on the plane and a normal vector to the plane,
 - ii. three points on the plane.

Additional Criteria:

- (a) Find the point of intersection of a line and a plane.
- 2. Understand vector-valued functions of one variable (parametric curves) and their derivatives, perform associated computations, and apply understanding and computations to solve problems.

Core Criteria:

- (a) Find the rectangular equation of the path for parametric motion in two dimensions and identify its \shape" (line, circle, ellipse, etc.).
- (b) Find velocity, speed and acceleration for parametric motion in two or three dimensions.
- (c) Solve an initial value problem for parametric motion in two or three dimensions.
- (d) Apply initial value problem methods to solve projectile motion problems.

Additional Criteria:

- (a) Determine when and where a particle reaches maximum or minimum speed, and that speed.
- (b) Given the path and direction of motion of a particle and information about whether it is speeding up, slowing down, or moving at a constant speed at a point, sketch possible velocity and acceleration vectors at that point. Sketch possible tangential and normal components of the acceleration at that point.
- (c) Given the velocity and acceleration of a particle, determine whether the particle is (a) speeding up, slowing down or moving at constant speed and (b) whether the path of the particle is straight or curved.
- (d) Find displacement and distance traveled for parametric motion in two or three dimensions.
- (e) Find the curvature of a path at a given point for a planar curve.
- (f) Find the curvature of a path at a given point for a space curve.
- (g) Find the tangential and normal *vector* components of the acceleration vector. Find the tangential and normal *scalar* components of the acceleration vector. Write the acceleration vector at some time in the form $\mathbf{a} = a_T \mathbf{T} + a_N \mathbf{a}$

- (c) Apply the chain rule to compute the derivative of a composition of functions.
- (d) Find vectors and a plane tangent to a surface at a point.
- (e) Find and interpret (location, direction, change in dependent variable per unit of change in independent variables) directional derivatives of a function at a point.
- (f) Compute the gradient of a function.
- (g) Determine the direction in which a function has the greatest rate of increase or decrease at a point, and give that rate. Determine the directions from a point in which a function remains constant.
- (h) Find local and/or absolute minima and maxima of a function of one or two variables. (This includes both the function values *and* where they occur.)

Additional Criteria:

- (a) Given a level curve plot of a function of two variables, determine the locations and approximate values of absolute maxima and minima on a closed region.
- (b) Use calculus to nd absolute maxima and minima of a function of two variables on a closed region.
- (c) Determine the average rate of change of a function of two or three variables from one point to another.
- 4. Understand multiple and iterated integrals, perform associated computations, and apply understanding and computations to solve problems.

Core Criteria:

- (a) Evaluate a simple double or triple iterated integral \by hand".
- (b) Set up and compute a double integral over a given region.
- (c) Transform double integrals between rectangular and polar coordinates.
- (d) Set up and compute a polar double integral over a given region.

Additional Criteria:

- (a) Set up and compute a triple integral over a given volume.
- (b) Find the mass of a plate or solid object with variable density. Set up an expression for nding the centroid of an object.